
ICEnets and Regularization
Deep Learning for Actuarial Modeling

36th International Summer School SAA
University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wüthrich

11 September 2025

1/60



ICEnet - Producing Rational Results with Neural Networks

Can neural networks be trained to produce actuarially sound results?

The challenge: Deep learning models can learn “irrational" patterns
that do not align with our expectations

ICEnet (Richman & Wüthrich, 2024) solution: Constrain neural
networks during training in the output space

Key questions to discuss:
How can we enforce smoothness and monotonicity in neural network
predictions?

Can we maintain or improve predictive accuracy with constraints?

Bridge traditional actuarial techniques with modern ML
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Regularization overview

We will cover regularization concepts for neural networks which closely connect
to ICEnet A general formulation for the regularized empirical risk is:

θ̂ ∈ arg min
θ

( n∑
i=1

vi
φ L(yi , µθ(xi)) + η R(θ−0)

)
,

where:

Parameter vector: θ = (θ0, θ1, . . . , θr )⊤ with intercept θ0 (bias term)
Regularise only θ−0 = (θ1, . . . , θr )⊤; the intercept should not be penalised
Scale-free η: drop any 1/n in the empirical loss so the strength of η does not
diminish with n

Examples: R(·) = ∥·∥2
2 (ridge Tikhonov and Arsenin (1977)), ∥·∥1 (Lasso

Tibshirani (1996)), ∥·∥0 (best subset)
See also Hastie, Tibshirani, and Wainwright (2015)
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Roadmap of Lecture

Introduce regularization concepts for general models (neural networks,
GLMs, etc.)

Explain basic ML interpretability techniques (PDPs, ICEs)

Present the ICEnet architecture

Show how to enforce constraints through loss functions

Demonstrate results on French MTPL data

Discuss extensions and improvements
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Introduction to Regularisation

Why We Need Regularization

The Goal: Build models that generalize well to new, unseen data, not just
the data they were trained on.
The Problem: Models, especially complex or highly flexible ones, can easily
overfit.
i.e. These models may learn the random noise in the training data instead of
the true underlying patterns.
Regularization = set of methods designed to control model complexity.
Many regularization methods prevent overfitting by penalizing large, unstable
coefficients in some manner.
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Introduction to Regularisation

What is Regularization?

Regularization is a way to formally manage the bias-variance tradeoff.
How it works: We add a penalty term to the model’s objective function,
such as the negative log-likelihood (NLL).

Minimize: NLL(β) + Penalty(β)

This penalty discourages models that don’t conform with certain features that
we desire.
The Bargain: We deliberately introduce a small amount of bias into our
coefficient estimates to achieve a much larger and more beneficial reduction
in variance.
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Introduction to Regularisation

Bias vs. Variance ⇆

Under squared-error loss with Y = f (X ) + ε and E[ε | X ] = 0, the expected
test MSE decomposes as (Bishop, 2006):

E
[
(Y − f̂ (X ))2]

= Bias2[f̂ (X )]︸ ︷︷ ︸
(Etrain f̂ (X)−f (X))2

+ Var[f̂ (X )]︸ ︷︷ ︸
Vartrain(f̂ (X))

+ Var(ε | X )︸ ︷︷ ︸
Irreducible error

,

Bias (underfitting): systematic error from an overly restrictive model
or strong regularization.

Variance (overfitting): sensitivity to sampling noise; predictions vary
a lot across training sets.

Tradeoff: increasing flexibility typically lowers bias and raises variance;
pick complexity to minimize expected test error.

In ML, goal is to find the optimal balance that minimizes the total
error on future data BUT in actuarial science, we cannot usually
accept “biased" models!
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Introduction to Regularisation

L2 Regularization (Ridge): Shrinkage & Stability

Objective Function: Ridge adds a penalty proportional to the sum of the
squared coefficients, also known as the squared L2-norm:

Minimize: NLL(β) + λ

p∑
j=1

β2
j

The L2 Penalty:
The

∑
β2

j term penalizes large coefficient values.
The tuning parameter λ controls the strength of this penalty.

Primary Effect: Shrinkage
All coefficients are shrunk towards zero but never reach it. This makes
the model more stable.
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Introduction to Regularisation

Ridge Regression in Action

For an Ordinary Least Squares (OLS) model, the Ridge solution has a closed
form:

β̂Ridge = (XT X + λI)−1XT y

Solving Multicollinearity: In standard OLS, if predictors are highly
correlated, the XT X matrix is unstable and difficult to invert.
The addition of the λI term adds a constant to the diagonal of the matrix,
ensuring it is always invertible and stable. This leads to more plausible
parameter estimates.
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Introduction to Regularisation

Ridge-Regularised Poisson Log-Link GLM

Model: log µθ(x) = θ0 +
∑q

j=1 θjxj (do not penalise θ0)

θ̂ridge = arg min
θ∈Rq+1

n∑
i=1

2vi

(
µθ(xi)− yi − yi log µθ(xi )

yi

)
+ η

q∑
j=1

θ2
j
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Introduction to Regularisation

L1 Regularization (Lasso): Sparsity & Feature Selection

Objective Function: Lasso adds a penalty proportional to the sum of the
absolute values of the coefficients, also known as the L1-norm:

Minimize: NLL(β) + λ

p∑
j=1
|βj |

The L1 Penalty:
The use of the absolute value |βj | is the key difference.
This penalty is non-differentiable at zero, which allows it to shrink some
coefficients to exactly zero.

Primary Effect: Sparsity
Lasso performs automatic feature selection by setting some
coefficients exactly to zero, creating simpler, more interpretable models.

11/60



Introduction to Regularisation

The Geometry of L1 vs. L2

The behavior of Ridge and Lasso can be understood by their geometric
constraint regions.

Differentiability
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Introduction to Regularisation

The Fused Lasso: For Ordered Data

The Problem: Standard methods ignore the natural ordering of predictors
like age bands or bonus-malus levels.
Objective Function: The Fused Lasso adds a second penalty for the
differences between adjacent coefficients:

Minimize: NLL(β) + λ1

p∑
j=1
|βj |+ λ2

p∑
j=2
|βj − βj−1|

The fusion penalty (λ2
∑
|βj − βj−1|) encourages adjacent coefficients to

become equal, effectively "fusing" categories.
This automates tariff simplification in a principled way.
Encourages piecewise-constant effects over ordered categories; see Tibshirani,
Saunders, Rosset, Zhu, and Knight (2005)
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Introduction to Regularisation

Best-Subset (L0) and Elastic Net

Best-subset (L0)

min NLL(β) + η

r∑
j=1

1{βj ̸= 0} (computationally hard)

Elastic net (Zou & Hastie, 2005)

min NLL(β) + η
(

α∥β∥1 + (1− α)∥β∥2
2

)
, α ∈ [0, 1]

Commentary

L0 yields the sparsest model but is non-convex/combinatorial; small-p
problems admit exact search, otherwise use heuristics; tune η via CV
Elastic Net bridges L1/L2 (α=1 lasso, α=0 ridge); stabilises selection under
collinearity and encourages grouping of correlated predictors Zou and Hastie
(2005)
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Introduction to Regularisation

Group LASSO

Group LASSO (Yuan & Lin, 2006)

min
n∑

i=1

vi
φ L(yi , µθ(xi)) +

G∑
k=1

ηk ∥θ(k)∥2

Commentary

Group LASSO selects/drops whole blocks (e.g., all dummies of a categorical);
standardise within/between groups so penalties are comparable Yuan and Lin
(2006)
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Introduction to Regularisation

An Actuarial Original - Whittaker-Henderson

The principles of regularization have been part of actuarial science for over a
century.
Whittaker-Henderson (WH) smoothing for mortality graduation is a form
of penalized least squares.
The WH Formula: It minimizes a function that balances two goals:

Minimize:
∑

x
wx (q′

x − qx )2 + λ
∑

x
(∆zqx )2

Fidelity: The first term,
∑

wx (q′
x − qx )2, measures the fit to the raw

data q′
x .

Smoothness: The second term, λ
∑

(∆zqx )2, is a penalty that
discourages roughness in the graduated rates qx .
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Introduction to Regularisation

From Regularization to ICEnet: The Next Step

What We’ve Seen:
Classic regularization methods control the coefficients of a GLM.
They add penalties to an objective function to enforce desired properties
like stability (Ridge), simplicity (Lasso), and smoothness (Fused
Lasso).

The New Challenge:
In a complex "black box" model like a neural network, we can’t directly
control the coefficients in the same way.

The Question:
How can we apply this same principle - penalizing undesirable behavior
in a loss function - to control the outputs of the model to ensure they
are rational and smooth?
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Neural Network Regularisation
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Neural Network Regularisation

Families of Neural Network Regularisation

This section explores the primary methods used to control complexity and prevent
overfitting directly within neural network architectures. We can group these
techniques into three main families:

Explicit Regularisation: Directly modifying the loss function to add a
penalty for complexity.
Stochastic Regularisation: Injecting randomness into the training process to
build more robust models.
Implicit Regularisation: Regularising effects that arise naturally from the
choice of model architecture and optimization algorithm.
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Neural Network Regularisation

Explicit Regularisation: L2 or L1

The most direct way to regularise a network is as above: by adding a
penalty term to the loss function. L2 regularisation, the most common form,
directly penalizes the sum of the squared weights.

The Intuition: A model with smaller weights is simpler and less
sensitive to minor changes in input features, making it more stable.

Objective Function: The standard data loss, Ldata(w), is augmented
with the squared L2-norm of the weights:

Ltotal(w) = Ldata(w) + λ

2
∑

i
w2

i

Here, λ is the regularisation rate that controls the strength of the
penalty.

Can also use L1 regularisation, which penalizes the sum of the absolute
values of the weights!19/60



Neural Network Regularisation

Weight Decay vs L2 (summary)

L2-regularised objective: Ltotal(w) = Ldata(w) + λ
2

∑
i w2

i

Weight decay SGD update:
w ← w − η(∇Ldata(w) + λw) = (1− ηλ)w − η∇Ldata(w)
Equivalence: For plain SGD, L2 penalty and classical weight decay are
equivalent
Decoupled weight decay (AdamW) Loshchilov and Hutter (2019):

Remove the regularization term from the gradient update
Needed for adaptive optimizers; differs from L2 penalty because the
penalty gradient would be rescaled per-parameter

Bayesian view: L2 penalty corresponds to a zero-mean Gaussian prior on
weights
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Neural Network Regularisation

Stochastic Regularisation: Dropout

Stochastic methods regularise by injecting randomness into the training process,
forcing the network to learn more robust features. Dropout is the most prominent
example.

The Mechanism: During each training step, a random fraction of neurons
are temporarily "dropped" (their outputs are set to zero).
The Intuition: This prevents neurons from developing complex
co-adaptations, where one neuron relies on another to function correctly.
Each neuron must learn features that are more generally useful and robust on
their own.
Ensemble Interpretation: Dropout is an efficient way of training a massive
ensemble of different "thinned" neural networks. At test time, using the full
network approximates averaging the predictions of all these sub-networks, a
powerful technique for reducing overfitting.
Acts only during training; see Srivastava, Hinton, Krizhevsky, Sutskever, and
Salakhutdinov (2014); Wager, Wang, and Liang (2013)
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Neural Network Regularisation

Dropout: Mathematical Formulation

Training-time

For each hidden activation hi , sample mask mi ∼ Bernoulli(pkeep)
independently

Scale to preserve expectation: h̃ = m ⊙ h
pkeep

Moments
E[h̃i ] = hi , Var(h̃i) = 1− pkeep

pkeep
h2

i

For a linear pre-activation z = w⊤h̃ + b:

E[z ] = w⊤h + b, Var(z) =
∑

i
w2

i Var(h̃i)

Test-time

Use full activations h without masks (no scaling needed)
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Neural Network Regularisation

Stochastic Regularisation: Batch Normalization

While primarily designed to stabilize and accelerate training, Batch Normalization
(BatchNorm) also provides a subtle regularising effect.

Primary Goal: BatchNorm addresses "internal covariate shift" by normalizing
the inputs to each layer to have zero mean and unit variance for each
mini-batch.
Regularising Effect: The effect comes from the mean (µB) and variance
(σ2

B) being calculated on a random mini-batch, not the entire dataset.
The same data point will be normalized slightly differently depending on
the other points in its mini-batch.
This injects a small amount of noise into the layer’s activations at each
step, making it harder for the model to memorize the training data.
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Neural Network Regularisation

Implicit Regularisation: The Optimizer and Architecture

Implicit regularisation arises naturally from the training process itself, without any
explicit penalty or added noise.

From the Optimizer (SGD): The choice of optimizer has a profound impact.
Loss landscapes can have sharp minima (brittle solutions that don’t
generalize) and flat minima (robust solutions that do).
The inherent noise in Stochastic Gradient Descent (SGD) biases the
optimizer towards finding the wider, flatter minima that are associated
with better generalization.

From the Architecture: The structure of a deep network can induce a
preference for simple solutions.

Even when over-parameterized, networks trained with gradient descent
show a bias towards finding simple functions.
For example, training deep linear networks implicitly biases the solution
towards a low-rank matrix, corresponding to a simpler, more structured
relationship.
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Neural Network Regularisation

Implicit Regularisation: One-slide
Optimizer (SGD)

Flat minima correlate with better
generalisation (Hochreiter &
Schmidhuber, 1997; Li, Xu, Taylor,
Studer, & Goldstein, 2018).
Small-batch SGD tends to find
flatter minima than large-batch
(Keskar, Mudigere, Nocedal,
Smelyanskiy, & Tang, 2017; aw
Jastrzębski et al., 2018).
SGD noise can be viewed as
approximate Bayesian inference
(Mandt, Hoffman, & Blei, 2017).
Tuning the noise scale improves
test performance (Smith, Elsen, &
De, 2020).

Architecture

Parameter-to-function map is biased
toward simple functions (Valle-Pérez,
Camargo, & Louis, 2019).
Spectral bias: low-frequency
components are learned first
(Rahaman et al., 2019).
Deep linear/factorised models select
low-rank, near minimum
nuclear-norm solutions under
gradient descent (Gunasekar,
Woodworth, Bhojanapalli,
Neyshabur, & Srebro, 2017; Arora,
Cohen, Hu, & Luo, 2019).
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Neural Network Regularisation

Early Stopping

Early stopping is a simple and effective way to prevent overfitting.
Stop the training process when the performance on a validation set stops
improving.
i.e. we do not allow model fitting to converge!
Early fitting iterations learn systematic effects common to many instances;
later iterations chase noise
Stop when validation loss stops improving to avoid fitting noise
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Neural Network Regularisation

Overfitting Illustration
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Neural Network Regularisation

Validation Split and Stopping Rule

Split learning data into training U and validation V
Train on U , monitor validation loss L(θ[t];V)
Use a callback: keep the parameters with minimal validation loss
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ICEnets

Presentation Roadmap

We will explain the ICEnet approach to constraining neural networks
Explain the ICEnet structure =>

Use ML interpretability techniques during model training. . .
. . . to ensure models are trained to capture relationships appropriately

Test models on French Motor Third Party Liability (MTPL) data
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ICEnets

Wider field of ensuring “rational results”
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ICEnets

Pitfalls - 1

Climate Change Modelling with XGBoost
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ML and Neural Network Interpretability

ML Interpretability

Fitting an ML model means that model structure is opaque. . .
. . . so field of post-hoc model interpretability has developed
= methods to determine how model has captured relationships between
variables
Techniques:

Partial Dependence Plots (PDPs)
Individual Conditional Expectations (ICEs)
SHapley Additive exPlanations (SHAP)
Local Interpretable Model-agnostic Explanations (LIME)

Basic recipe:
Fit ML model
Modify the input data to model to isolate effect of single variable
Repeat for all combinations of data
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ML and Neural Network Interpretability

ICEs and PDPs

Main idea of ICEs is to test how model output varies. . .

. . . as we vary one input variable

Captures the marginal effect of changing a single variable’s value

ICE recipe:
Fit ML model

Modify value of single variable to isolate effect

Repeat for all records in the data

PDPs = average of ICE over whole dataset

Can be shown to be causal impact of changing a variable under certain
assumptions (see Zhao and Hastie (2019) )
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ML and Neural Network Interpretability

ICE Plot Formula

ỹ [j]
n = [ΨW (x̃ [j]

n (1))vn, ..., ΨW (x̃ [j]
n (Kj))vn]

ỹ [j]
n = The Individual Conditional Expectation (ICE), which is a vector

of predictions for a single policy n as feature j is varied across its
possible values.

ΨW = The trained neural network model, with all its learned weights
and biases represented by W .

x̃ [j]
n (u) = The feature vector for the n-th policy, but with the value for

feature j artificially set to a specific value u.

vn = The exposure for the specific n-th policy (e.g., duration in years).
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ML and Neural Network Interpretability

PDP Formula

PDP [j](u) = 1
N

N∑
n=1

ΨW (x̃ [j]
n (u))vn

PDP [j](u) = The Partial Dependence Plot value for feature j at a
specific value u.

N = The total number of policies (or observations) in the dataset.

ΨW = The trained neural network model, with all its learned weights
and biases represented by W .

x̃ [j]
n (u) = The feature vector for the n-th policy, but with the value for

feature j artificially set to u.

vn = The exposure for the n-th policy (e.g., duration in years).
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ML and Neural Network Interpretability

Example 1 - PDPs

PDPs are different from plots of:
Empirical observations
Fitted model predictions

PDPs isolate the effect of a single
variable. . .
. . . whereas empirical/fitted plots are
influenced by “correlation” between the
input variables
E.g. younger drivers have higher
bonus-malus scores => high dependence
between these variables removed by PDPs
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ML and Neural Network Interpretability

Example 2 – ICEs/PDPs/Empirical observations
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ML and Neural Network Interpretability

Actuaries smooth PDPs = ICEs

Actuarial pricing often uses GLMs which has an explicit linear model form (on
scale of link function)

g−1(y) = β1.x1 + · · ·+ βq.xq

Suppose x1 is categorical (or numerical and was binned) then we can
represent the GLM as:

g−1(y) =


β1,1 + · · ·+ βq.xq when x1 = x1,1

β1,2 + · · ·+ βq.xq when x1 = x1,2

. . .

β1,q1 + · · ·+ βq.xq when x1 = x1,q1

In a GLM, as we vary x1,1 → x1,2 our GLM value changes by β1,2 − β1,1

PDPs and ICEs determined by GLM coefficients
As we smooth or group GLM coefficients, we are smoothing the PDPs and
the ICEs
SHAP values can be derived directly from GLM + fitted parameters
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ML and Neural Network Interpretability

Grouping GLM coefficients
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ML and Neural Network Interpretability

Grouping GLM coefficients
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ICEnet

ICEnet - 1

Neural network with two main components:
Prediction network

Constraint network

Prediction network = vanilla
neural network

Constraint network = creates
predictions using pseudo-data

Parameters shared with constraint network => constraints influence
predictions
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ICEnet

ICEnet - 2

For constraint network, we augment the data input to network. . .

. . . using exactly the same inputs we would use to derive an ICE =
pseudo-data

x̃n 7→ ỹ [s1]
n , ..., ỹ [sS ]

n , ỹ [m1]
n , ..., ỹ [mM ]

n

x̃n = The input to the network’s constraint component, representing the
pseudo-data for a single policy n.

ỹ [s1]
n , ..., ỹ [sS ]

n = The set of output ICE (Individual Conditional
Expectation) vectors for all features requiring a smoothness constraint
(from the set S).

ỹ [m1]
n , ..., ỹ [mM ]

n = The set of output ICE vectors for all features requiring
a monotonicity constraint (from the set M).
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ICEnet

ICEnet Compound Loss Function

Train network using compound loss function:
Prediction loss – ensure model makes good predictions
(Whittaker-Henderson smoothing)

E.g. Poisson deviance for claims frequency

Smoothing loss – ensure model makes smooth predictions on the
pseudo-data

Monotonicity loss – ensure model enforces monotonicity on the
pseudo-data (Monotonicity loss – Penalize deviations )
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ICEnet

ICEnet Compound Loss Function - Prediction Loss

Poisson Deviance Function:

LD(yn, ŷn) = 2
[
yn log

(yn
ŷn

)
− (yn − ŷn)

]

LD(yn, ŷn) = The Poisson deviance loss for a single observation n,
which measures the goodness-of-fit of the model for that observation.

yn = The observed value (e.g., the actual number of claims) for the
n-th policy.

ŷn = The model’s predicted value (e.g., the expected number of
claims) for the n-th policy.

log(·) = The natural logarithm function.

Note: The term yn log(yn), which is part of the expanded formula, is
taken to be zero when yn = 0.44/60



ICEnet

ICEnet Compound Loss Function - Smoothing Loss

Smoothing Loss Component:

L2(n) =
∑
j∈S

Kj∑
u=4

λsj [∆3(ΨW (x̃ [j]
n (u)))]2

L2(n) = The smoothing loss component for a single policy n.

S = The set of all features that require a smoothness constraint.

Kj = The number of distinct values for feature j over which the
constraint is evaluated.

λsj = The penalty parameter that controls the strength of the
smoothing constraint for feature j .

[∆3(·)]2 = The squared third-order difference of the model’s
predictions. This term penalizes roughness; a smaller value implies a
smoother, more linear relationship.45/60



ICEnet

ICEnet Compound Loss Function - Monotonicity Loss

Monotonicity Loss Component:

L3(n) =
∑
j∈M

Kj∑
u=2

λmj max[δj∆1(ΨW (x̃ [j]
n (u))), 0]

L3(n) = The monotonicity loss component for a single policy n.

M = The set of all features that require a monotonicity constraint.

λmj = The penalty parameter that controls the strength of the
monotonicity constraint for feature j .

max[·, 0] = A function that ensures a penalty is only applied if the
trend violates the desired monotonicity (i.e., the value inside is
positive).

δj = A direction parameter set to −1 to enforce a monotonic increase
or +1 to enforce a monotonic decrease for feature j .

∆1(·) = The first-order difference, representing the change in
prediction as the feature value increases.
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ICEnet

ICEnet Compound Loss Function (iv) Putting it All
Together

Total ICEnet Loss:

L(n) = LD(yn, ŷn) + L2(n) + L3(n)

L(n) = The total compound loss for a single policy n, which the model
aims to minimize during training.

LD(yn, ŷn) = The deviance loss (e.g., Poisson deviance), which
measures the predictive accuracy of the model on the actual data.

L2(n) = The smoothing loss, which penalizes non-smooth model
outputs.

L3(n) = The monotonicity loss, which penalizes model outputs that
violate a desired monotonic trend.
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Example

ICEnet results - 1

Fit ICEnet to French MTPL data
Split data in 90/10 ratio for
train/testing sets
Used small neural network:

3 layers – 32/16/8
Embeddings for categorical covariates

Ensemble results = network aggregation
(nagging)
Value of smoothing/monotonicity
constraints chosen to produce
acceptably smooth/monotonic ICEs
About 3 minutes to fit normal NN/12
minutes to fit ICEnet on GPU
Small loss of predictive power in
exchange for constraints (0.2385 vs
0.2383)
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Example

ICEnet results - 2

Can we decompose the difference in predictive power between:
Smoothing constraint vs Monotonicity constraint?

Fit 3 versions of the ICEnet (baseline performance = 0.2383)

Smoothing + Monotonicity (worse predictive performance)/Only
Smoothing (worse predictive performance)/Only Monotonicity (better
predictive performance)
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Example

ICEnet PDPs

PDPs from unconstrained NN models exhibit
several undesirable characteristics:

Bonus-malus level/density/vehicle age
covariates - significant roughness =
unacceptable changes in rates
In some PDPs, monotonicity has not been
maintained
PDPs for the driver age and vehicle power
exhibit different shapes over the different
runs = learned different relationships
between the covariates

PDPs from ICEnets significantly smoother and
monotonically increasing in all cases with
constraint
Relationships learned by ICEnets quite different
for bonus-malus level, vehicle age and driver age
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Example

ICEnet – did it work?

Penalty on constrained ICE –
Penalty on unconstrained ICE
Densities have long left tail =>
ICE outputs significantly more
monotonic and smooth
Densities peak around zero =>
adding constraints has generally
not significantly “damaged”
outputs from FCN
Densities of monotonicity scores
for bonus-malus level and density
variables = short right tail =>
original FCN model produces
some outputs that are already
monotonic and these are altered
somewhat by ICEnet
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Example

ICEnet – ICEs - monotonicity results
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Example

ICEnet – ICEs - smoothness results
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Example

Varying the penalties

Fit an ICEnet while
varying the value of the
constraints from very
small to very large
PDPs shown for different
values of the constraints;
Unconstrained = black
Best fit selected based on
validation set and shown
in red
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Extensions

Local ICEnet

ICEnet penalties act over whole range of
the dataset =>

Influenced by values of variables with
little exposure
Computationally heavy

Local ICEnet – apply the same principle as
ICEnet but only on a small “window”
around each observation
Parameter ω is chosen to synthesize ω−1

2
data points on either side of actual data
point
12 minutes to fit on CPU without GPU
Local ICEnet outperforms NN on average
and for nagging predictor
=> Local ICEnet allows constraints to be
enforced with smaller loss of predictive
performance than global ICEnet
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Extensions

Local ICEnet – did it work?

Moderately successful
at enforcing required
constraints
Most of the variables
show improved
monotonicity and
smoothness scores. . .
. . . except for
bonus-malus level
and density
covariates.
Could vary the size of
the window as a
hyper-parameter
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Extensions

Local ICEnet – monotonicity results
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Extensions

Local ICEnet – smoothness results
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Conclusions on ICEnet

Closing thoughts

Presented a novel approach - the ICEnet - to constrain neural network
predictions to be monotonic and smooth
Connected to ICE model interpretability technique
Global ICEnet can be approximated using less computationally intensive
version = Local ICEnet
Fitting these models to real-world open-source dataset has shown:

monotonicity constraints enforced when fitting ICEnet can improve
out-of-sample performance of actuarial models
models with a combination of smoothing and monotonic constraints
allows models to produce predicted frequencies of claim that accord with
intuition and are commercially reasonable

Could also impose constraints on the global behaviour of networks instead i.e.
on PDPs
Other formulations of smoothing constraints could be imposed e.g. absolute
differences could be used
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Conclusions on ICEnet

Discussion points

Do we need smoothness constraints for non-life pricing?

Balance between predictive accuracy (jaggedness) and credibility

Is a fusion constraint a better approach?

Can we verify a model is "working" through output constraints such as
ICEnet?

What other constraints need to be introduced for actuarial modelling?

See paper for full references
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